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§1 AM - GM inequality

The inequality of arithmetic and geometric means (AM–GM inequality) asserts that
the geometric mean of a list of non-negative real numbers is less than or equal to the
arithmetic mean of the same list and that the two means are only equivalent if and only
if each number in the list is the same (in which case they are both that number). In a
more compact form, we can write this as

x1 + x2 + x3 + ...+ xn
n

≥ n
√
x1x2x3...xn

§1.1 AM-GM inequality proof

The inequality states that if a1, a2, ..., an whose product is equal to 1, then a1 + a2 + ...+
an ≥ n, with equality only when a1 = a2 = ... = an = 1 Let us prove this by induction.
The case n = 1 is trivial; so, let us start with n ≥ 2. Without the loss of generality, we
can assume that a1 is the maximum ≥ 1 and a2 is the minimum ≤ 1. Thus we have,

a1 + a2 − a1a2 − 1 = (a1 − 1)(1− a2) ≥ 0

i.e.,
a1 + a2 − a1a2 ≥ 1

Now, we can also see that

a1a2 + a3 + ...+ an ≥ n− 1

Adding the inequalities, we get a1 + a2 + ...+ an ≥ n

§1.2 Solved examples

1. Show that a
b +

b
a ≥ 2

Answer: This is a direct application of AM-GM inequality. Setting a
b = x and

b
a = y, we get that

x+ y = 2

√
a

b
× b

a
= 2
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Therefore,
a

b
+

b

a
≥ 2

2. Proof that
(1 + a)(1 + b)(1 + c) ≥ 8

√
abc

Answer: Applying the AM-GM inequality in each term, we get

(1 + a) ≥ 2
√
a

(1 + b) ≥ 2
√
b

(1 + c) ≥ 2
√
c

Multiplying them together, we get that

(1 + a)(1 + b)(1 + c) ≥ 8
√
abc

3. If x,y, and z are positive real numbers satisfying xyz=32, find the minimum value of

x2 + 4xy + 4y2 + 2z2

Answer: We can write the given expression as

x2 + 2xy + 2xy + 4y2 + z2 + z2

Using the AM-GM inequality, we get

x2 + 2xy + 2xy + 4y2 + z2 + z2 ≥ 6 6
√
24(xyz)4 = 96

Therefore, the minimum value for the expression is 96, which occurs at (x, y, z) =
(4, 2, 4)

4. Find the minimum value of

f(x) =
9x2 sin2(x) + 4

x sin(x)

for 0 < x < π

Answer: Let x sin(x) = y. Therefore,

f(x) =
9x2 sin2(x) + 4

x sin(x)
=

9y2 + 4

y
≥ 12

Therefore, the minimum value of y is 2
3 , and the minimum value of f(x) is 12

5. Let a, b, c be non-negative real numbers. Prove that

3
√

(1 + a)(1 + b)(1 + c) ≥ 1 +
3
√
abc

Answer: Using the AM-GM inequality, we get that

a+ b+ c

3
≥ 3

√
abc

3
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ab+ ac+ bc

3
≥ (

3
√
abc)2

Adding them together, we get

a+ b+ c+ ab+ bc+ ac ≥ 3(
3
√
abc+ (

3
√
abc)2)

Adding 1 + abc to both sides, we get

1 + a+ b+ c+ ab+ bc+ ac+ abc ≥ 1 + 3
3
√
abc+ 3(

3
√
abc)2 + abc

This becomes
(1 + a)(1 + b)(1 + c) ≥ (1 +

3
√
abc)3

Taking the cubic root for both sides, we arrive at the requested expression

3
√
(1 + a)(1 + b)(1 + c) ≥ 1 +

3
√
abc

§2 Cauchy-Shwartz inequality

Cauchy-Shwartz inequality (CS inequality) is one of the most crucial and famous inequal-
ities. In its simplest form, it states that for numbers a1, a2, ..., an and b1, b2, ..., bn,

(a21 + a22 + ...+ a2n)(b
2
1 + b22 + ...+ b2n) ≥ (a1b1 + a2b2 + ...+ anbn)

2

In summation notation, this is written as( n∑
i=1

a2i

)( n∑
i=1

b2i

)
≥

( n∑
i=1

aibi

)2

§2.1 CS-inequality proof

Consider the quadratic trinomial

n∑
i=1

(aix− bi)
2 =

n∑
i=1

(a2ix
2 − 2aibi + b2i )

= x2
n∑

i=1

a2i − 2x
n∑

i=1

aibi +
n∑

i=1

b2i

This trinomial is non-negative for all x ∈ R, so its discriminant is not positive, i.e.

4

( n∑
i=1

aibi

)2

−4

( n∑
i=1

a2i

)( n∑
i=1

b2i

)
≤ 0

Therefore, we can conclude that( n∑
i=1

a2i

)( n∑
i=1

b2i

)
≥

( n∑
i=1

aibi

)2

Hence, proven.
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§2.2 Solved examples

1. Given that 3a+ 4b = 5, find the minimum value of a2 + b2

Answer: Using CS inequality, we have that

(32 + 42)(a2 + b2) ≥ (3a+ 4b)2

Therefore,
25(a2 + b2) ≥ 25

= (a2 + b2) ≥ 1

Hence, the minimum value for a2 + b2 is 1

2. Given a1, a2, ..., an ∈ R such that a1 + a2 + ...+ an = 1, prove that

a21 + a22 + ...+ a2n ≥ 1

n

Answer: Using CS inequality, we get

(a21 + a22 + ...+ a2n)(n) ≥ (1× a1 + 1× a2 + ...+ 1× an)

Therefore, we can clearly see that

a21 + a22 + ...+ a2n ≥ 1

n

3. Let a1, a2, · · · , an , b1, b2, ..., bn be positive real numbers such that a1+ a2+ ...+ an
= b1 + b2 + ...+ bn. Show that

a21
a1 + b1

+
a22

a2 + b2
+ · · ·+ a2n

an + bn
≥ a1 + a2 + · · ·+ an

2

Answer: The question can be written using summation notation as follows

∑ a2i
ai + bi

≥ (
∑

ai)
2∑

ai +
∑

bi

Moreover, we are given that ∑
ai +

∑
bi = 2

∑
ai

Therefore, the RHS will be

(
∑

ai)
2∑

ai +
∑

bi
=

(
∑

ai)
2

2
∑

ai
=

∑
ai
2

Therefore, ∑ a2i
ai + bi

≥
∑

ai
2

This completes the proof.
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4. Let a, b, c, d be positive real numbers such that a+ b+ c+d = 1. Find the minimum
value of

1

a
+

1

b
+

1

c
+

1

d

Answer: From CS-inequality, we have

(a+ b+ c+ d)

(
1

a
+

1

b
+

1

c
+

1

d

)
≥ 42

Since a+ b+ c+ d = 1, we get that

1

a
+

1

b
+

1

c
+

1

d
≥ 16

Therefore, the minimum value is 16.

5. For positive real numbers a, b, c > 0, show that

abc(a+ b+ c) ≤ a3b+ b3c+ c3a

Answer: First, let (a1, a2, a3) =

(
a√
c
, b√

a
, c√

b

)
and (b1, b2, b3) = (

√
c,
√
a,
√
b)

Now, using the CS inequality, we get(
a2

c
+

b2

a
+

c2

b

)
(c+ a+ b) ≥ (a+ b+ c)2

Therefore, we get that (
a2

c
+

b2

a
+

c2

b

)
≥ (a+ b+ c)

Multiplying both sides by abc, we get

abc(a+ b+ c) ≤ a3b+ b3c+ c3a

§3 Bernoulli’s inequality

Bernoulli’s inequality is famous for solving inequalities that include exponentiation of
(1 + x). It states that for x1, x2, ..., xn, which are real numbers with the same sign and
are greater than −1, we have

(1 + x1)(1 + x2)...(1 + xn) ≥ 1 + x1 + x2 + x3 + ...+ xn

This inequality has several useful applications and variants.

§3.1 Bernoulli’s inequality proof

We will now prove that
(1 + x)r ≥ 1 + rx

for every real number r ≥ 1 and x ≥ −1 We can see immediately that this is true for
r = 0, r = 1. Let us suppose that it is true for r = k. Therefore, we have

(1 + x)k+2 = (1 + x)k + (1 + x)2

6
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≥ (1 + kx)(1 + 2x+ x2)

= 1 + 2x+ x2 + kx+ 2kx2 + kx3

= 1 + (k + 2)x+ kx2(x+ 2) + x2

≥ 1 + (k + 2)x

Hence, proven.

§3.2 Solved examples

1. Substitute x = 5
n and x = −5

6n to prove that

1 +
5

6n− 5
≤ n

√
6 ≤ 1 +

5

n

Answer: 1 - Using Bernoulli’s inequality, we know that

(1 + x)n ≥ 1 + nx

Using x = 5
n , we get (

1 +
5

n

)n

≥ 6

Taking the nth root, we get

1 +
5

n
≥ n

√
6

2. Again, we can substitute x = −5
6n and get(

1− 5

6n

)n

≥ 1

6(
6n− 5

6n

)n

≥ 1

6

Using the reciprocal rule, we get (
6n

6n− 5

)n

≤ 6

After taking the nth root and rewriting the LHS, we get(
1 +

5

6n− 5

)
≤ n

√
6

From (1) and (2), we have that

1 +
5

6n− 5
≤ n

√
6 ≤ 1 +

5

n

Hence, proven.
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3. Use Bernoulli’s equation to show that the sequence

an =

(
1 +

1

n

)n

converges as n −→ ∞
Answer: Let bn = an(1 + 1

n). We can show that bn is a decreasing sequence as
follows:

bn
bn−1

=
(1 + n−1)n+1

(1 + (n− 1)−1)n

=
(n2 − 1)n(n+ 1)

n2nn

1 + n−1

(1 + (n2 − 1)−1)n
≤ 1 + n−1

(1 + ( n
n2−1

)

<
1 + n−1

1 + n
n2

= 1

Therefore, we deduce that bn−1 > bn. Since bn ≥ 1, bn converges as n −→ ∞.
Consequently, an converges as n −→ ∞, as well.

§4 Telescoping sum: How to solve them

A telescoping sum is a sum in which subsequent terms cancel each other, leaving only
initial and final terms. A simple example would be

S =

n−1∑
i=1

(ai − ai+1)

= (a1 − a2) + (a2 − a3) + ...+ (an−1 − an) = a1 − an

Most of the time, telescoping sums are simplified using partial fraction decomposition.

§4.1 Solved examples

1. Evaluate
∞∑
n=1

1

n(n+ 1)

Answer: We can rewrite the question as

∞∑
n=1

1

n
− 1

n+ 1
= lim

N→∞

N∑
n=1

1

n
− 1

n+ 1

= lim
N→∞

(
1− 1

2

)
+

(
1

2
− 1

3

)
+...+

(
1

N
− 1

N + 1

)
= lim

N→∞

(
1− 1

N + 1

)
= 1

8
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2. Evaluate
∞∑
n=0

2n+ 3

(n+ 1)(n+ 2)

Answer:
∞∑
n=0

2n+ 3

(n+ 1)(n+ 2)
=

∞∑
n=0

(
1

n+ 1
+

1

n+ 2

)

=

(
1+

1

2

)
+

(
1

2
+
1

3

)
+...+

(
1

n− 1
+
1

n

)
+

(
1

n
+

1

n+ 1

)
+

(
1

n+ 1
+

1

n+ 2

)
+... = ∞

Therefore, this sum doesn’t converge to a single value but diverges.

3. Evaluate
∞∑
n=1

2

n2 + 4n+ 3

Answer:
∞∑
n=1

2

n2 + 4n+ 3
=

∞∑
n=1

(
1

n+ 1
− 1

n+ 3

)
(
1

2
−1

4

)
+

(
1

3
−1

5

)
+...+

(
1

n− 3
− 1

n− 1

)
+

(
1

n− 2
− 1

n

)
+

(
1

n− 1
− 1

n+ 1

)
+

(
1

n
− 1

n+ 2

)
+

(
1

n+ 1
− 1

n+ 3

)
+...

=
1

2
+

1

3
− 1

n+ 2
− 1

n− 3

As this approach infinity, we get that the sum is equal to 5
6

§5 Complex numbers

Complex numbers are numbers that extend out the group of the real numbers. It contains
the number i defined being equal to

√
−1. They have a wide range of applications in

math and physics and can be used as effective problem-solving techniques. Let us define
now that a complex number (z) is in the form of a + bi, where a, b are real numbers.
They adhere to almost all real numbers laws and properties.

An important formula used in many fields, known as Euler’s formula, is defined as

eix = cosx+ i sinx

§5.1 Solved examples

1. Find real and/or imaginary solutions to

x2 + x+ 1 = 0

Answer: Using the quadratic formula,

−b±
√
b2 − 4ac

2a

we get that the solutions are(
−1 + i

√
3

2
,
−1− i

√
3

2

)

9
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2. Express (
1 + i

1− i

)3

in the form of a+ bi, where a, b are real numbers.

Answer: Let us start by simplifying 1+i
1−i . Multiplying by the conjugate i+ 1, we

get that
1 + i

1− i
× 1 + i

1 + i
=

i2 + 2i+ 1

2
= i

Therefore, i3 = −i. So, a = 0, b = −1

3. Solve the equation
2z4 − 14z3 + 33z2 − 26z + 10 = 0

given that one of its roots is 3 + i where z represents a complex number

Answer: Since i+ 3 is a solution, then 3− i is also solution. Therefore, we get that
(i+ 3)(3− i) is a factor of the given equation. Now, we get that

2z2 − 2z + 1 = 0

is the other factor in the given equation. Factorizing the equation, we get that

(2z − 1)2 = −1

Therefore,

z =
1

2
± 1

2
i, 3± i

4. Given the equation
2z3 + pz2 + qz + 16 = 0

has solutions α, β, γ, where γ is real. Also, α = 2(1 + i
√
3). What is the value of

β, γ, p, q

Answer: We can deduce that another solution would be 2(1− i
√
3), and since γ is

real, we get that this is the value of β. We know, from the multiplication of the
roots of a cubic, that

αβγ =
−16

2
= −8

Substituting with the value of α and γ, we get that γ = −1
2 .

The sum of the roots is equal to −p
2 . Substituting with their values, we get that

p = −7. We also know that αβ + βγ + γα = q
2 . Therefore, we get that q = 28

§6 Take the conjugate!

Taking the conjugate is a simple yet effective problem-solving approach that may be used
in a wide range of situations. Mathematically, a conjugate is created by swapping the
signs of two terms in a binomial under the assumption that the sum and product of the
binomial and its conjugate are rational. In this case, the binomial may be a complex
number or a surd. Take a look at the conjugates of the binomials below.

2 +
√
3

Taking conjugate−−−−−−−−−−→ 2−
√
3

10
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3 + 5i
Taking conjugate−−−−−−−−−−→ 3− 5i

When we multiply something with its conjugate we get difference between two squares.
Look at the example below:

(a+ b)(a− b) = a2 − b2

This property can be very helpful to rationalize the denominator or evaluating sums or
even solving inequalities and equations!

Example 6.1 (Evaluating finite sum)

Evaluate the following expression

1

1 +
√
2
+

1√
2 +

√
3
+

1√
3 +

√
4
+ ...+

1√
2016 +

√
2017

Solution. All we need to do is to multiply every fraction by its conjugate, for example
multiply the first fraction by

1−
√
2

1−
√
2

By doing so, the sum can be simplified as following:

1−
√
2 +

√
2−

√
3 +

√
3−

√
4 +

√
4− ...+

√
2016−

√
2017

−1

This expression simplifies to 1−
√
2017

−1 , which is equal to
√
2017− 1

Example 6.2 (Solve for x!)

Let a and b be distinct real numbers. Solve the following equation√
x− b2 −

√
x− a2 = a− b

Solution. It should be obvious that the following conditions must hold true:

x ≥ a2 x ≥ b2

Actually the simplest approach to solve this equation is taking the conjugate, another
approaches leads to rather complicated computations. Taking the conjugate gives

a2 − b2√
x− b2 +

√
x− a2

= a− b

which is equivalent to √
x− b2 +

√
x− a2 = a+ b

Adding this to the original equation gives the following:√
x− b2 = a

This implies that

x =
√
a2 + b2

11
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§7 Arithmetic progressions

An arithmetic progression is one of the form

a, a+ d, a+ 2d, a+ 3d, . . . , a+ (n− 1)d, . . .

One important arithmetic sum is

1 + 2 + · · ·+ n =
n(n+ 1)

2
.

To obtain a closed form, we utilise Gauss’ trick:
If

An = 1 + 2 + 3 + · · ·+ n

then

An = n+ (n− 1) + · · ·+ 1.

Adding these two quantities,

An = 1 + 2 + · · ·+ n

An = n+ (n− 1) + · · ·+ 1

2An = (n+ 1) + (n+ 1) + · · ·+ (n+ 1) = n(n+ 1),

since there are n summands. This gives An = n(n+1)
2 , that is,

since there are n summands. This gives An = n(n+1)
2 , that is,

1 + 2 + · · ·+ n =
n(n+ 1)

2
.

For example,

1 + 2 + 3 + · · ·+ 100 =
100(101)

2
= 5050.

Applying Gauss’s trick to the general arithmetic sum

(a) + (a+ d) + (a+ 2d) + · · ·+ (a+ (n− 1)d)

we obtain

(a) + (a+ d) + (a+ 2d) + · · ·+ (a+ (n− 1)d) =
n(2a+ (n− 1)d)

2

Example 7.1

Find the sum of all the integers from 1 to 1000 inclusive, which are not multiples of
3 or 5

Solution. One computes the sum of all integers from 1 to 1000 and weeds out the sum of
the multiples of 3 and the sum of the multiples of 5 , but puts back the multiples of 15 ,
which one has counted twice. Put

12
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An = 1 + 2 + 3 + · · ·+ n,

B = 3 + 6 + 9 + · · ·+ 999 = 3A333,

C = 5 + 10 + 15 + · · ·+ 1000 = 5A200,

D = 15 + 30 + 45 + · · ·+ 990 = 15A66.

The desired sum is

A1000 −B − C +D = A1000 − 3A333 − 5A200 + 15A66

= 500500− 3 · 55611− 5 · 20100 + 15 · 2211
= 266332.

Example 7.2

Each element of the set {10, 11, 12, . . . , 19, 20} is multiplied by each element of the
set {21, 22, 23, . . . , 29, 30}.

If all these products are added, what is the resulting sum?

Solution. This is asking for the product (10 + 11 + · · ·+ 20)(21 + 22 + · · ·+ 30) after all
the terms are multiplied. But

10 + 11 + · · ·+ 20 =
(20 + 10)(11)

2
= 165

and

21 + 22 + · · ·+ 30 =
(30 + 21)(10)

2
= 255.

The required total is (165)(255) = 42075.

Example 7.3

The sum of a certain number of consecutive positive integers is 1000 . Find these
integers.

Solution. Let the the sum of integers be S = (l+1)+(l+2)+(l+n). Using Gauss’ trick we

obtain S = n(2l+n+1)
2 . As S = 1000, 2000 = n(2l+n+1). Now 2000 = n2+2ln+n > n2,

whence n ≤
√
2000 = 44. Moreover, n and 2l+ n+ 1 divisors of 2000 and are of opposite

parity. Since 2000 = 2453, the odd factors of 2000 are 1, 5, 25, and 125 . We then see
that the problem has the following solutions:

n = 1, l = 999,

n = 5, l = 197,

n = 16, l = 54,

n = 25, l = 27.

353 Example Find the sum of all integers between 1 and 100 that leave remainder 2
upon division by 6.
Solution: We want the sum of the integers of the form 6r + 2, r = 0, 1, . . . , 16. But

this is

13
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16∑
r=0

(6r + 2) = 6

16∑
r=0

r +

16∑
r=0

2 = 6
16(17)

2
+ 2(17) = 850

§8 Sophie Germain Identity

The Sophie Germain Identity states that:

a4 + 4b4 = (a2 + 2b2 + 2ab)(a2 + 2b2 − 2ab)

One can prove this identity simply by multiplying out the right side and
verifying that it equals the left. To derive the factoring, we begin by completing
the square and then factor as a difference of squares:

a4 + 4b4 = a4 + 4a2b2 + 4b4 − 4a2b2

= (a2 + 2b2)2 − (2ab)2

= (a2 + 2b2 − 2ab)(a2 + 2b2 + 2ab)

Example 8.1

Compute

(104 + 324)(224 + 324)(344 + 324)(464 + 324)(584 + 324)

(44 + 324)(164 + 324)(284 + 324)(404 + 324)(524 + 324)

Proof. The Sophie Germain Identity states that a4+4b4 can be factored as
(
a2 + 2b2 − 2ab

) (
a2 + 2b2 + 2ab

)
.

Each of the terms is in the form of x4 + 324. Using Sophie Germain, we get that

x4 + 324 = x4 + 4 · 34

=
(
x2 + 2 · 32 − 2 · 3 · x

) (
x2 + 2 · 32 + 2 · 3 · x

)
= (x(x− 6) + 18)(x(x+ 6) + 18),

so the original expression becomes

[(10(10− 6) + 18)(10(10 + 6) + 18)] · · · [(58(58− 6) + 18)(58(58 + 6) + 18)]

[(4(4− 6) + 18)(4(4 + 6) + 18)] · · · [(52(52− 6) + 18)(52(52 + 6) + 18)]
,

which simplifies to

(10(4) + 18)(10(16) + 18)(22(16) + 18)(22(28) + 18) · · · (58(52) + 18)(58(64) + 18)

(4(−2) + 18)(4(10) + 18)(16(10) + 18)(16(22) + 18) · · · (52(46) + 18)(52(58) + 18)
.

Almost all of the terms cancel out! We are left with 58(64)+18
4(−2)+18 = 3730

10 = 373 .

Example 8.2

Solve in integers. x− y4 = 4 Where x is a prime number.

14
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Proof. Rearrange the equation and use Sophie-Germain to get

x = y4 + 4 = (y2 + 2y + 2)(y2 − 2y + 2)

Therefore, either y2 + 2y + 2 = 1 or y2 − 2y + 2 = 1. Check the ys that work, and we get
that y = ±1 yields x = 5, y = ±1, and that is the only solution.

sectionVieta’s formulas Vieta’s formulas tell us that the sum and the product of the
roots of any polynomial are in the relation to the coefficient of the equation. A quadratic
equation which is represented as f(x) = ax2 + bx+ c have roots p and q ( the x-values
that make the equation equals zero). So, that would be{

q + p = −b
a

p× q = c
a

Given a three-degree polynomial for example f(x) = ax3 + bx2 + cx+ d, Vieta’s formulas
help us to find more information about its roots (their sum, their product, and sum of
pairwise products), Let r, s, and t are the roots of this polynomial so,

r + t+ s = −b
a

r × s× t = −d
a

rs+ rt+ ts = c
a

We will go straight into proof the second and third-degree polynomial, but it also
generalizes to higher degrees.

§8.1 Vieta’s formulas for quadratic equation proof

ax2 + bx+ c = a(x− p)(x− q) ”intercept form”

Now make a distribution,

ax2 + bx+ c = a(x− p)(x− q) = a(x2 − (p+ q)x+ pq) = ax2 − a(p+ q)x+ apq

Now compare the coefficient,{
ax2 + bx+ c =

ax2 − a(p+ q)x+ apq
=⇒ b = −a(p+ q) and c = apq

We can say that p+ q = −b
a and pq = c

a .

§8.2 Vieta’s formulas for third-degree polynomial proof

f(x) = ax3 + bx2 + cx+ d = k(x− r)(x− t)(x− s) where k is some constant

= kx3 − k(r + s+ t)x2 + k(rs+ ts+ rt)x− k(rst)

Now divide a from both sides as a = k, then compare the coefficient,

{
x3 + b

ax
2 + c

ax+ d
a =

x3 − (r + s+ t)x2 + (rs+ ts+ rt)x− (rst)
=⇒


−(r + t+ s) = b

a

(rs+ ts+ rt) = c
a

−(rst) = d
a

Hence proven!
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Example 8.3

1. Given r, s, and t are 3 distinct roots of 2x3 + x2 − 8x+ 3, Find r2 + t2 + s2.

Solution:
r2 + t2 + s2 = (r + s+ t)2 − 2(rs+ rt+ ts)

Using Vieta’s formulas, {
r + s+ t = −1

2

rs+ rt+ ts = −8
2 = −4

So,

r2 + t2 + s2 = (−1

2
)2 − 2(−4) = 8.25

Example 8.4

Given r, s, and t are 3 distinct roots of x3 − 2x2 + 3x− 4. Find

r2s+ s2r + s2t+ t2s+ t2r + r2t

Solution:

r2s+ s2r + s2t+ t2s+ t2r + r2t = (r + s+ t)(rs+ tr + st)− 3rts
r + s+ t = −−2

1 = 2

rs+ tr + st = 3
1 = 3

rts = −−4
1 = 4

So,
r2s+ s2r + s2t+ t2s+ t2r + r2t = 2× 3− 3× 4 = −6

Example 8.5

If x1 and x2 are the roots of the equation x2 − 8x+ 11 = 0, determine the value of

x31 + x21 + x1 + x32 + x22 + x2

Solution: First, we will rewrite the expression

(x31+x32)(x
2
1+x22)+(x1+x2) = (x1+x2)(x

2
1+x22−x1x2)+(x21+x22+2x1x2−2x1x2)+(x1+x2) =

(x1 + x2)((x1 + x2)
2 − 3x1x2) + ((x1 + x2)

2 − 2x1x2) + (x1 + x2)

Using Vieta’s formulas for quadratic equations,{
x1 + x2 =

−b
a = 8

1 = 8

x1x2 =
c
a = 11

1 = 11

x31+x21+x1+x32+x22+x2 = (x1+x2)((x1+x2)
2−3x1x2)+((x1+x2)

2−2x1x2)+(x1+x2) =

(8)((8)2 − 3× 11) + ((8)2 − 2× 11) + (8) = 298

16
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§9 Functional equations

Functional equations are equations where the unknowns are functions, rather than a
traditional variable. However, the methods used to solve functional equations can be quite
different than the methods for isolating a traditional variable. We can find the unknown
function using (substitution strategy, proving the function is surjective or proving the
function is injective).

§9.1 substitution strategy

When encountering functional equations, one of the first things to do is to plug in values.
We replace the variables such that x and y with Small numbers for example, {0, 1,−1} or
with another variables. Look at the following example and you will understand,

Example 9.1

Find all functions s.t,

f(
2x− 1

x− 3
) = x+ 3

Solution: For this functional equation we can replace 2x−1
x−3 by another variable for example

t and then get the value of x in terms of t,

t =
2x− 1

x− 3
=⇒ x =

3t− 1

(t− 2)

Now, rewrite the functional equation in terms of t,

f(t) =
3t− 1

(t− 2)
+ 3 =

3t− 1

(t− 2)
+

3t− 6

t− 2
=

6t− 7

t− 2

Finally, we get the functional equation which will be

f(x) =
6x− 7

x− 2

Another example and you will understand more (but in this example we will substitute
with a number):

Example 9.2

Find all functions f : R → R s.t,

f(x+ yf(x)) + x = f(xf(y)) + f(y + f(x))

Solution: First, we will substitute the variable (or the two) in the equation with a small
number say 0,
Replacing x with 0 and also y with 0

f(0 + 0f(0)) + 0 = f(0f(0)) + f(0 + f(0)) =⇒ ff((0)) = 0

Now, Replace x with 1 and also y with 1,

f(1 + 1f(1)) + 1 = f(1f(1)) + f(1 + f(1)) =⇒ f(f(1)) = 1

17
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Replace x with 1 and y with 0,

f(1+0f(1))+1 = f(1f(0))+f(0+f(1)) =⇒ f(1)+1 = f(f(0))+f(f(1)) =⇒ f(1) = 0

Now we will replace x with 1 and y we will keep it as itself,

f(1 + yf(1)) + 1 = f(1f(y)) + f(y + f(1)) =⇒ 1 = f(f(y)) + f(y)

As we have f(1) = 0 and f(f(1)) = 1 so, we have that f(0) = 1.
Now, replace y with 0 and keep x as itself

f(x+ 0f(x)) + x = f(xf(0)) + f(0 + f(x)) =⇒ x = f(f(x))

From the functional equation that we get before

1 = f(f(y)) + f(y) we can replace f(f(y)) with y

so we get
1 = y + f(y) =⇒ f(y) = 1− y

Finally, we get the functional equation which is f(x) = 1 − x, and then verify your
answer does it satisfies the given functional equation or not. If it doesn’t satisfy the given
functional equation there will be no solutions.

§9.2 surjective functions

Let f : X → Y be a function. Then f is surjective if every element of Y is the image of
at least one element of X. That is, image (f) = Y . Symbolically

∀y ∈ Y ∃x ∈ X such that f(x) = y

A synonym for ”Surjective” is ”onto”.

For example:
f(x) = x it is surjective on R

f(x) = x2 it is surjective on R+ but it not surjective on R

Look at the following question in functional equations:

Example 9.3

Find all functions f : R → R s.t,

f(f(f(x)) + y) = f(f(x− y)) + 2y

Solution: To prove that the function is surjective you will make the left-hand side contain
one function of something and the right-hand side will be a surjective quantity. To prove
that function is surjective substitute x with y and keep y as itself,

f(f(f(y)) + y) = f(f(y − y)) + 2y = f(f(0)) + 2y

so the function is surjective as we have on the right-hand side a surjective quantity
(constant ”f(f(0))” and 2y).
Now, let’s substitute y with 0,

f(f(f(x)) + 0) = f(f(x− 0)) + 2× 0 =⇒ f(f(f(x))) = f(f(x))

Since our function is surjective so we have that f(x) = x as f(f(x)) is also surjective.

18
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§9.3 injective functions

Let f : X → Y be a function. Then f is injective if distinct elements of X are mapped
to distinct elements of Y . That is, if x1 and x2 are in X such that x1 ̸= x2 then
f(x1) ̸= f(x2), This is equal to saying if f(x1) = f(x2), then x1 = x2. A synonym for
”injective” is ”one-to-one function”.

Example 9.4

Find all functions f : R → R s.t,

f(f(f(x) + y) + y) = x+ y + f(y)

Solution: If we substitute y with zero and keep x as itself

f(f(f(x) + 0) + 0) = x+ 0 + f(0) =⇒ f is surjective function

There is a classical way to prove the function is injective,

∃a, b : f(a) = f(b)

we want to prove that a = b. we will substitute x with a and then we will substitute x
with b then we will subtract the two relations to get a = b.

a+ y + f(y) = b+ y + f(y) =⇒ a = b

So, the function f is injective. If the function is injective and surjective we call the
function ”bijective”.
Now, replace y with −x and keep x as itself

f(f(f(x)− x)− x) = x− x+ f(−x) =⇒ f(f(f(x)− x)− x) = f(−x)

As f is injective so we can say that

f(f(x)− x)− x = −x =⇒ f(f(x)− x) = 0

Suppose that
∃α : f(α) = 0

∴ f(f(x)− x) = 0 = f(α) =⇒ f(x)− x = α =⇒ f(x) = α+ x

Substitute this functional equation in the original question to get the value of α, we will
get α = 0 So our functional equation is

f(x) = x+ 0 = x

§9.4 Cauchy’s functional equations

(First Cauchy equation) Let f : R → R be a continuous function of a continuous real
variable that satisfies the functional relation

f(x+ y) = f(x) + f(y), ∀x, y ∈ R

So, f(x) = cx where c ∈ R is some constant.
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(Second Cauchy equation) Let f : R → R be a continuous function of a contin-
uous real variable that satisfies the functional relation

f(x+ y) = f(x)f(y), ∀x, y ∈ R

So, f(x) = cx where c ∈ R+ is some constant.

(Third Cauchy equation) Let f : R∗
+ → R be a continuous function of a contin-

uous real variable that satisfies the functional relation

f(xy) = f(x) + f(y), ∀x, y ∈ R∗
+

So, f(x) = c lnx where c ∈ R is some constant.

(Fourth Cauchy equation) Let f : R+ → R be a continuous function of a con-
tinuous real variable that satisfies the functional relation

f(xy) = f(x)f(y), ∀x, y ∈ R+

So, f(x) = xn where n ∈ Z is some constant.

§10 Binomial theorem

The binomial theorem (or binomial expansion) is a result of expanding the powers of
binomials or sums of two terms. The coefficients of the terms in the expansion are the
binomial coefficients

(
n
k

)
.

The binomial theorem states that for many positive integers n, we have

(x+ y)n =

(
n

0

)
xn +

(
n

1

)
xn−1y + · · ·+

(
n

n− 1

)
xyn−1 +

(
n

n

)
yn =

n∑
k=0

(
n

k

)
xn−kyk

We can easily prove it by induction.

Example 10.1

What is the coefficient of x4 in the expansion of (x+ 1)9 ?

Solution: The coefficient will be equal to(
9

4

)
=

9!

(9− 4)!4!
= 126

Example 10.2

In the expansion of (2x+ k
x)

8, where k is a positive constant, the term independent
of x is 700000. What is the value of k?

20



Math Gems Festoon (October 3, 2022) Top 22 strategies you’ll use in Math contests.

Solution: The terms will be in the form(
8

2

)
× (2x)8−n × (

k

x
)n

for the term to be independent of x, We need (x)8−n × ( 1x)
n = x0 =⇒ n = 4. Thus the

constant term of (
8

4

)
× (2)4 × (k)4 = 700000 =⇒ k = 5

Example 10.3

What is the coefficient of the x2y2z2 term in the polynomial expansion of (x+y+z)6?

Solution: In order to achieve a product of x2y2z2, the ”x” must be ”chosen” 2 times out
of 6. This gives

(
6
2

)
combinations. Then, the ”y” must be ”chosen” 2 times out of the

remaining 4. This gives
(
4
2

)
combinations. Then, the remaining factors will be ”z”. Thus,

the coefficient of the x2y2z2 term is:
(
6
2

)(
4
2

)
= 90.

§11 Boring absolute values

We are all aware that working with absolute numbers may be tedious when solving
equations or inequalities. The first step that most students take when confronted with
such problems is to explicitly write the absolute values. Let’s take the following easy
case in point.

Example 11.1

Solve the equation
|2x− 1| = |x+ 3|

Solution. We have

|2x− 1| =

{
−2x+ 1 for x ≤ 1

2

2x− 1 for x ≥= 1
2

and |x+ 3| =

{
−x− 3 for x ≤ −3

x+ 3 for x ≥ −3

If x ≤ −3, the equation becomes −2x+ 1 = −x− 3; hence x = 4. But ¿-3, so we have no
solutions in this case. If −3 < x ≤ 1

2 , we obtain −2x+ 1 = x+ 3 s x = −2
3 . Finally, if

x > 1
2 , we obtain x = 4 again. We conclude that the solutions are x = −2

3 and x = 4

Nevertheless, there is an easier way to solve the equation by noticing that |a| = |b| if
and only if a = ±b, so that it is not necessary to write the absolute values in an explicit
form. Here are some properties of the absolute values that might be useful in solving
equations and inequalities:

|ab| = |a||b|∣∣∣a
b

∣∣∣ = |a|
|b|

|a+ b| ≤ |a|+ |b|
with equality if and only if ab ≥ 0

|a− b| ≤ |a|+ |b|

with equality if and only if ab ≤ 0
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Example 11.2

Solve the equation
|x− 1|+ |x− 4| = 2

Solution. Observe

|x− 1|+ |x− 4| ≥ |(x− 1)− (x− 4)| = |3| = 3 > 2,

hence the equation has no solutions

§12 Mathematical induction

The desired result is first demonstrated to hold for a specific value (the
Base Case), and it is then demonstrated that if the desired result holds for
a specific value, it also holds for another, closely related value. This form
of evidence is known as induction. Usually, to demonstrate this, one must
first demonstrate that the result holds for n = 1 (the Base Case) and then
demonstrate that the fact that the result holds for n = k indicates that it
also holds for n = k + 1. By demonstrating that the result holds for n = 1,
which implies that it holds for n = 1 + 1 = 2, which further indicates that it
holds for n = 2+ 1 = 3, and so on, we may demonstrate that the result holds
for all positive integers.
Other, odder inductions are possible. If a problem asks you to prove something
for all integers greater than 3, you can use n = 4 as your base case instead.
You might have to induct over the even positive integers numbers instead of
all of them; in this case, you would take n = 2 as your base case, and show
that if n = k gives the desired result, so does n = k + 2. If you wish, you can
similarly induct over the powers of 2.

Here is a simple example of how induction works.

Example 12.1

Proof that the sum of the first n integers is equal to n(n+1)
2

Proof. Base Case: If n = 1, then 1+2+. . .+n = 1, and 1(2)
2 = 1. So, 1+2+. . .+n = n(n+1)

2
for n = 1.
Inductive Step: Suppose the conclusion is valid for n = k. That is, suppose we have

1 + 2 + · · ·+ k = k(k+1)
2 . Adding k + 1 to both sides, we get

1 + 2 + · · ·+ k + (k + 1) =
k(k + 1)

2
+

2(k + 1)

2
=

(k + 1)(k + 2)

2
,

so the conclusion holding for n = k implies that it holds for n = k+ 1, and our induction
is complete.

Example 12.2 (try by yourself)

A) Prove that the sum of the square of the first n integers is equal to n(n+1)(2n+1)
6

B) Prove that
n∑

i=1

i3 = (

n∑
i=1

i)2
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Example 12.3

If x+
1

x
= 2 cosx so prove that

xn +
1

xn
= 2 cosnx

Proof. Proof by strong induction:
True for n = 1 (given).
If true for n = 1, 2, 3, ..., n then

(xn +
1

xn
)(x+

1

x
) = xn+1 +

1

xn+1
+ xn−1 +

1

xn−1

xn+1 +
1

xn+1
= (xn +

1

xn
)(x+

1

x
)− (xn−1 +

1

xn−1
)

= 2 cosnx · 2 cosx− 2 cos(n− 1)x

= 2(cos(n+ 1)x+ cos(n− 1)x− cos(n− 1)x)

= 2 cos(n+ 1)x

=⇒ true for n+ 1.
Therefore true for all n ∈ N.

Example 12.4

Let ⟨a⟩ be a sequence satisfying a1 = a2 = 1 and an = 1
2(an−1 +

2
an−2

) for n > 2.
Prove that 1 ≤ an ≤ 2 for n is an element of the naturals.

Proof. Base Cases:

a1 = a2 = 1 =⇒ a1 ∈ [1, 2] and a2 ∈ [1, 2]

Inductive Step:

1 =
1

2

(
1 +

2

2

)
≤ 1

2
(an−1 +

2

an−2
) ≤ 1

2

(
2 +

2

1

)
= 2

∴ (an−2 ∈ [1, 2] and an−1 ∈ [1, 2]) =⇒ an ∈ [1, 2]

Example 12.5

Prove that:

ln 2 ∗ ln 3 ∗ ln 4 ∗ ... ∗ ln(n+ 1) ≤ (n+ 1)!

en
;n ∈ N

Proof. We will use induction in order to prove the inequality above.
i) n = 1 ln 2 ≤ 2!

e , which is true.

ii) n = k Assume that ln 2 · ln 3 · · · ln k · ln(k + 1) ≤ (k+1)!
ek

.

iii) n = k + 1 Now we are to prove that ln 2 · ln 3 · · · ln k · ln(k + 1) · ln(k + 2) ≤ (k+2)!
ek+1 .

ln 2 · ln 3 · · · ln k · ln(k + 1) · ln(k + 2) ≤ ln(k + 2) · (k+1)!
ek

≤ (k+2)!
ek+1 .

We now have to prove that ln(k + 2) ≤ k+2
e =⇒ lnx ≤ x

e =⇒ lnxe ≤ ln ex, which is
true.
Hence, the induction is complete.
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§13 Pigeon hole principle

The pigeonhole principle in combinatorics asserts that one hole must have
two or more pigeons if n+ 1 or more pigeons are inserted into n holes. This
seemingly unimportant assertion may be utilised in incredibly inventive ways
to produce powerful arguments for counting; the idea is especially useful in
Olympiad contexts.

The theory may also be known as the Dirichlet box theory in earlier writings.
The problem with the balls and boxes may be phrased more effectively as
follows: If n balls are to be placed in k boxes and n > k, then at least one
box must contain more than one ball.

Example 13.1

If a Martian has an infinite number of red, blue, yellow, and black socks in a drawer,
how many socks must the Martian pull out of the drawer to guarantee he has a pair?

Proof. The Martian must pull 5 socks out of the drawer to guarantee he has a pair. In
this case the pigeons are the socks he pulls out and the holes are the colors. Thus, if he
pulls out 5 socks, the Pigeonhole Principle states that some two of them have the same
color. Also, note that it is possible to pull out 4 socks without obtaining a pair.

Example 13.2

How many students do you need in a school to guarantee that there are at least 2
students who have the same first two initials?

Proof. There are 26× 26 = 676 different possible sets of two initials that can be obtained
using the 26 letters A,B,C, ..., Z, so the number of students should be greater than 676.
Thus, the minimum number of students is 677.

Example 13.3

There are 20 students in a school. Any two of them have a grandmother in common.
Prove that at least 14 of them have a common grandmother.

Proof. Suppose that there exists a student with only 1 grandmother. It follows that all
20 students have this common grandmother.

Now, let us assume that all students have at least 2 grandmothers. Consider the 2
oldest grandmothers of each student as special.
Among the special grandmothers,
- if there exists 2 distinct special ones, then of course all 20 students will have a common

grandmother.
- if there exists 3 distinct special ones, then there will exist at least⌈

20× 2

3

⌉
= 14

students with the same grandmother.
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§14 Ceva’s theorem

Theorem 14.1

Let ABC be a triangle, and let D,E, F be points on lines BC,CA,AB, respectively.
Lines AD,BE,CF are concurrent if and only if

BD

DC
· CE

EA
· AF
FB

= 1

This also works for the reciprocal of each of the ratios, as the reciprocal of 1 is 1.
(Note that the Cevians do not necessarily lie within the triangle)

Example 14.2

In triangle ABC, AB = 308 and AC = 35. Given that AD, BE, and CF, intersect
at P and are an angle bisector, median, and altitude of the triangle, respectively,
compute the length of BC.

Proof. Let BC = x.
By the Angle Bisector Theorem,

CD

BD
=

AC

AB
=

35

308
=

5

44

Let CF = h. Then by the Pythagorean Theorem, h2 +AF 2 = 352 and h2 +BF 2 = x2.
Subtracting the former equation from the latter to eliminate h, we have BF 2 −AF 2 =
x2 − 352 so (BF +AF )(BF −AF ) = x2 − 1225.

Since BF +AF = AB = 308, BF −AF = x2−1225
308 .

We can solve these equations for BF and AF in terms of x to find that

BF = 154 +
x2 − 1225

616
=

and

AF = 154− x2 − 1225

616
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Now, by Ceva’s Theorem,
AE

EC
· CD

DB
· BF

FA
= 1

, so 1 · 5
44 · BF

AF = 1 and 5BF = 44AF . Plugging in the values we previously found,

5 · 154 + 5(x2 − 1225)

616
= 44 · 154− 44(x2 − 1225)

616
so

49

616
(x2 − 1225) = 39 · 154

and

x2 − 1225 = 75504

which yields finally x = 277.

§15 Product rule

(Product Rule) Suppose that an experiment E can be performed in k stages: E1 first,
E2 second, ..., Ek last. Suppose moreover that Ei can be done in ni different ways,
and that the number of ways of performing Ei is not influenced by any predecessors
E1, E2, . . . , Ei−1. Then E1 and E2 and . . . and Ek can occur simultaneously in n1n2 · · ·nk

ways.

Example 15.1

In a group of 8 men and 9 women we can pick one man and one woman in 8 · 9 = 72
ways. Notice that we are choosing two persons.

Example 15.2

A red die and a blue die are tossed. In how many ways can they land?

If we view the outcomes as an ordered pair (r, b) then by the multiplication principle
we have the 6 · 6 = 36 possible outcomes

So, the red die can land in 6 ways and also the blue die may land in 6 ways.
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Example 15.3

A multiple-choice test consists of 20 questions, each one with 4 choices. There are 4
ways of answering the first question, 4 ways of answering the second question, etc.,
hence there are 420 = 1099511627776 ways of answering the exam.

Example 15.4

There are 9 · 10 · 10 = 900 positive 3-digit integers:

100, 101, 102, . . . , 998, 999.

For, the leftmost integer cannot be 0 and so there are only 9 choices {1, 2, 3, 4, 5, 6, 7, 8, 9}
for it,

9, x, y

There are 10 choices for the second digit
and also 10 choices for the last digit

9, 10, y

Remark 15.5. Definition A palindromic integer or palindrome is a positive integer whose
decimal expansion is symmetric and that is not divisible by 10 . In other words, one reads
the same integer backwards or forwards. 1

Example 15.6

The following integers are all palindromes:

1, 8, 11, 99, 101, 131, 999, 1234321, 9987899.

Example 15.7

How many palindromes are there of 5 digits?

Solution.

There are 9 ways of choosing the leftmost digit.
9, a, b, c, d Once the leftmost digit is chosen, the last digit must be identical to it, so

we have
9, a, b, c, 1 There are 10 choices for the second digit from the left 9, 10, b, c, 1 Once this

digit is chosen, the second digit from the right must be identical to it, so we have only 1
choice for it, 9, 10, b, 1, 1 Finally, there are 10 choices for the third digit from the right,
9, 10, 10, 1, 1 which give us 900 palindromes of 5-digits.

Example 15.8

How many positive divisors does 300 have? Solution: We have 300 = 3 · 2252. Thus
every factor of 300 is of the form 3a2b5c, where 0 ≤ a ≤ 1, 0 ≤ b ≤ 2, and 0 ≤ c ≤ 2.
Thus there are 2 choices for a, 3 for b and 3 for c. This gives 2 · 3 · 3 = 18 positive
divisors.
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Example 15.9

How many paths consisting of a sequence of horizontal and/or vertical line segments,
each segment connecting a pair of adjacent letters in figure 5.6 spell BIPOLAR?

Solution. Split the diagram. Since every required path must use the R, we count paths
starting from R and reaching up to a B. Since there are six more rows that we can travel
to, and since at each stage we can go either up or left, we have 26 = 64 paths. The other
half of the figure will provide 64 more paths. Since the middle column is shared by both
halves, we have a total of 64 + 64− 1 = 127 paths.

We now prove that if a set A has n elements, then it has 2n subsets. To motivate the
proof, consider the set {a, b, c}. To each element we attach a binary code of length 3
. We write 0 if a particular element is not in the set and 1 if it is. We then have the
following associations:

∅ ↔ 000,

{a} ↔ 100,

{b} ↔ 010,

{c} ↔ 001,

{a, b} ↔ 110,

{a, c} ↔ 101,

{b, c} ↔ 011,

{a, b, c} ↔ 111.

Thus there is a one-to-one correspondence between the subsets of a finite set of 3
elements and binary sequences of length 3 . 452 Problem Out of nine different pairs of
shoes, in how many ways could I choose a right shoe and a left shoe, which should not
form a pair?

§15.1 The Sum Rule

(Sum Rule: Disjunctive Form) Let E1, E2, . . . , Ek, be pairwise mutually exclusive events.
If Ei can occur in ni ways, then either E1 or E2 or, . . ., or Ek can occur number of ways
equals to:
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n1 + n2 + · · ·nk

Notice that the ”or” here is exclusive.

Example 15.10

In a group of 8 men and 9 women we can pick one man or one woman in 8 + 9 = 17
ways. Notice that we are choosing one person.

Example 15.11

There are five Golden retrievers, six Irish setters, and eight Poodles at the pound.
How many ways can two dogs be chosen if they are not the same kind.

Solution. We choose: a Golden retriever and an Irish setter or a Golden retriever and a
Poodle or an Irish setter and a Poodle.

One Golden retriever and one Irish setter can be chosen in 5 · 6 = 30 ways; one Golden
retriever and one Poodle can be chosen in 5 · 8 = 40 ways; one Irish setter and one
Poodle can be chosen in 6 · 8 = 48 ways. By the sum rule, there are 30 + 40 + 48 = 118
combinations.

Example 15.12

To write a book 1890 digits were utilised. How many pages does the book have?

Solution. A total of

1 · 9 + 2 · 90 = 189

digits are used to write pages 1 to 99 , inclusive. We have of 1890− 189 = 1701 digits
at our disposition which is enough for 1701/3 = 567 extra pages (starting from page 100).
The book has 99 + 567 = 666 pages.

Example 15.13

The sequence of palindromes, starting with 1 is written in ascending order

1, 2, 3, 4, 5, 6, 7, 8, 9, 11, 22, 33, . . .

Find the 1984-th positive palindrome.

Solution. It is easy to see that there are 9 palindromes of 1-digit, 9 palindromes with
2-digits, 90 with 3-digits, 90 with 4-digits, 900 with 5-digits and 900 with 6-digits. The
last palindrome with 6 digits, 999999 , constitutes the 9 + 9+ 90+ 90+ 900+ 900 = 1998
th palindrome. Hence, the 1997th palindrome is 998899 , the 1996th palindrome is 997799
, the 1995th palindrome is 996699 , the 1994th is 995599 , etc., until we find the 1984th
palindrome to be 985589.
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Example 15.14

The integers from 1 to 1000 are written in succession. Find the sum of all the digits.

Example 15.15

When writing the integers from 000 to 999 (with three digits), 3× 1000 = 3000 digits
are used. Each of the 10 digits is used an equal number of times, so each digit is
used 300 times. The the sum of the digits in the interval 000 to 999 is thus

(0 + 1 + 2 + 3 + 4 + 5 + 6 + 7 + 8 + 9)(300) = 13500.

Therefore, the sum of the digits when writing the integers from 000 to 1000 is
13500 + 1 = 13501.

Example 15.16

How many 4-digit integers can be formed with the set of digits {0, 1, 2, 3, 4, 5} such
that no digit is repeated and the resulting integer is a multiple of 3 ?

Solution. The integers desired have the form D1D2D3D4 with D1 ̸= 0. Under the
stipulated constraints, we must have

D1 +D2 +D3 +D4 ∈ {6, 9, 12}.
We thus consider three cases.
Case I: D1+D2+D3+D4 = 6. Here we have {D1, D2, D3, D4} = {0, 1, 2, 3, 4}, D1 ̸= 0.

There are then 3 choices for D1. After D1 is chosen, D2 can be chosen in 3 ways, D3 in
2 ways, and D1 in 1 way. There are thus 3× 3× 2× 1 = 3 · 3! = 18 integers satisfying
case I.

Case II: D1 +D2 +D3 +D4 = 9. Here we have {D1, D2, D3, D4} = {0, 2, 3, 4}, D1 ̸= 0
or {D1, D2, D3, D4} = {0, 1, 3, 5}, D1 ̸= 0. Like before, there are 3 · 3! = 18 numbers in
each possibility, thus we have 2× 18 = 36 numbers in case II.

Case III: D1+D2+D3+D4 = 12. Here we have {D1, D2, D3, D4} = {0, 3, 4, 5}, D1 ̸= 0
or {D1, D2, D3, D4} = {1, 2, 4, 5}. In the first possibility there are 3 · 3! = 18 numbers,
and in the second there are 4! = 24. Thus we have 18 + 24 = 42 numbers in case III.
The desired number is finally 18 + 36 + 42 = 96.

§16 Permutations

In combinatorics, a permutation is an ordering of a list of objects. Permutations are
important in a variety of counting problems (particularly those in which order is impor-
tant), as well as in various other areas of mathematics; for example, the determinant is
often defined using permutations.

The number of permutations of n things taken k at a time is

P (n, k) = n(n− 1) . . . (n− k + 1) =
n!

(n− k)!

A permutation of some objects is a particular linear ordering of the objects; P (n, k) in
effect counts two things simultaneously: the number of ways to choose and order k out

30



Math Gems Festoon (October 3, 2022) Top 22 strategies you’ll use in Math contests.

of n objects. A useful special case is k = n, in which we are simply counting the number
of ways to order all n objects. This is n(n− 1) · · · (n− n+ 1) = n!. If we use the another
form of permutation

n!

(n− k)!
=

n!

(n− n)!
=

n!

(0)!

We can conclude an important result that 0! = 1.

Example 16.1

How many outcomes are possible when three dice are rolled, if no two of them may
be the same?

Solution:

6P3 =
6!

(6− 3)!
= 6× 5× 4 = 120

Example 16.2

How many arrangements can be made out of the letters of the word

”PERMUTATIONS”

?

Solution: As we have in this word 2 letters of ”T” we will divide in the end by 2!
(permutation with repetition) as it appeared twice

12!

2!
= 239500800

Example 16.3

Lisa has 4 different dog ornaments and 6 different cat ornaments that she wants to
place on her mantle. All of the dog ornaments should be consecutive and the cat
ornaments should also be consecutive. How many ways can they be arranged?

Solution: We have to decide if we want to place the dog ornaments first, or the cat
ornaments first, which gives us 2 possibilities. We can arrange the cat ornaments in
6! ways and the dog ornaments in 4! ways. Hence, by the rule of product, there are
2× 6!× 4! = 34560 ways to arrange the ornaments (Permutations with Restriction).

§17 Combination

A combination is a way of choosing elements from a set in which order does not matter.
A wide variety of counting problems can be cast in terms of the simple concept of
combinations.

The number of subsets of size k of a set of size n (also called an n−set) is

C(n, k) =
P (n, k)

k!
=

n!

k!(n− k)!
=

(
n

k

)
The notation C(n, k) is rarely used; instead, we use

(
n
k

)
, pronounced ”n choose k”.
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Example 17.1

How many ways are there to select 3 males and 2 females out of 7 males and 5
females?

Solution:
7!

3!(7− 3)!
× 5!

2!(5− 2)!
= 350

Example 17.2

How many ordered non-negative integer solutions (a, b, c, d) are there to the equation
a+ b+ c+ d = 10?

Solution: In this question, we can the formula of ”stars and bars” which was popularized
by William Feller

n−r+1Cn =10+4−1 C10 =

(
13

10

)
=

13!

10!(13− 10)!
= 286

Example 17.3

There are two distinct boxes, 10 identical red balls, 10 identical yellow balls, and
10 identical blue balls. How many ways are there to sort the 30 balls into the two
boxes so that each box has 15?

Solution: Let a, b, and c be the number of red, yellow, and blue balls, respectively. We
need to make a+ b+ c = 15, and then subtract the number of the cases where a > 10,
b > 10 or c > 10. to find the number of cases satisfying that a+ b+ c = 15 we will use
the formula of stars and bars which is

n−r+1Cn =17 C15 = 136

Now, the number of cases where 10 < r ≤ 15 is 1 + 2 + 3 + 4 + 5 = 5×6
2 = 15. Since

exactly the same applies for 10 < y ≤ 15 or 10 < c ≤ 15, the total number of cases that
we will subtract it from the total cases 136 is

15× 3 = 45

The answer is 136− 45 = 91.

§18 Ptolemy’s theorem

Ptolemy’s theorem states the relationship between the diagonals and the sides of a cyclic
quadrilateral. It is a powerful tool to apply to problems about inscribed quadrilater-
als.

Theorem 18.1

If a quadrilateral is inscribed in a circle, then the product of the measures of its
diagonals is equal to the sum of the products of the measures of the pairs of the
opposite sides:

AC ·BD = AB · CD +AD ·BC
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Proof. Let ABCD be a random quadrilateral inscribed in a circle.

The proposition will be proved if AC ·BD = AB · CD +AD ·BC
It’s easy to see in the inscribed angles that ∡ABD = ∡ACD, ∡BDA = ∡BCA, ∡BCA =
∡BDA

∆EBC ≈ ∆ABD ⇐⇒ CB

DB
=

CE

AD
⇐⇒ AD · CB = DB · CE [1]

Note that ∡ABD = ∡EBC ⇐⇒ ∡ABD + ∡KBE = ∡EBC + ∡KBE −→ ∡ABE =
∡CBk, then since ∡ABE = ∡CBK and ∡CAB = ∡CDB

∆ABE = ∆BDC ⇐⇒ AB

DB
=

AE

CD
⇐⇒ CD ·AB = DB ·AE [2]

Therefore from [1] , [2] , we have

AB · CD +AD ·BC = CE ·DB +AE ·DB

= (CE +AE)DB

= CA ·DB

Hence proved.

§19 Geometric Sums

A geometric progression is one of the form
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a, ar, ar2, ar3, . . . , arn−1, . . . ,

Example 19.1

Find the following geometric sum:

1 + 2 + 4 + · · ·+ 1024.

Solution. Let

S = 1 + 2 + 4 + · · ·+ 1024.

Then

2S = 2 + 4 + 8 + · · ·+ 1024 + 2048.

Hence

S = 2S − S = (2 + 4 + 8 · · ·+ 2048)− (1 + 2 + 4 + · · ·+ 1024) = 2048− 1 = 2047

Example 19.2

Find the geometric sum

x =
1

3
+

1

32
+

1

33
+ · · ·+ 1

399
.

Solution. We have

1

3
x =

1

32
+

1

33
+ · · ·+ 1

399
+

1

3100
.

Then

2

3
x =x− 1

3
x

=

(
1

3
+

1

37
+

1

33
+ · · ·+ 1

399

)
(

1

32
+

1

33
+ · · ·+ 1

399
+

1

3100

)
=
1

3
− 1

3100
.

From which we gather

x =
1

2
− 1

2 · 399
.

The following example presents an arithmetic-geometric sum.
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Example 19.3

sum
a = 1 + 2 · 4 + 3 · 42 + · · ·+ 10 · 49.

Solution. We have

4a = 4 + 2 · 42 + 3 · 43 + · · ·+ 9 · 49 + 10 · 410.

Now, 4a− a yields

3a = −1− 4− 42 − 43 − · · · − 49 + 10 · 410.

Adding this last geometric series,

a =
10 · 410

3
− 410 − 1

9
.

Example 19.4

Sn = 1 + 1/2 + 1/4 + · · ·+ 1/2n.

Interpret your result as n → ∞.

Solution. We have

Sn−
1

2
Sn = (1 + 1/2 + 1/4 + · · ·+ 1/2n)−

(
1/2 + 1/4 + · · ·+ 1/2n + 1/2n+1

)
= 1−1/2n.

hence

Sn = 2− 1/2n.

So as n varies, we have:

S1 = 2− 1/20 = 1

S2 = 2− 1/2 = 1.5

S3 = 2− 1/22 = 1.875

S4 = 2− 1/23 = 1.875

S5 = 2− 1/24 = 1.9375

S6 = 2− 1/25 = 1.96875

S10 = 2− 1/29 = 1.998046875

Thus the farther we go in the series, the closer we get to 2 . Let us sum now the
geometric series

S = a+ ar + ar2 + · · ·+ arn−1.

Plainly, if r = 1 then S = na, so we may assume that r ̸= 1. We have
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rS = ar + ar2 + · · ·+ arn.

Hence

S − rS = a+ ar + ar2 + · · ·+ arn−1 − ar − ar2 − · · · − arn = a− arn.

From this we deduce that

S =
a− arn

1− r
,

that is,

a+ ar + · · ·+ arn−1 =
a− arn

1− r

If |r| < 1 then rn → 0 as n → ∞.
For |r| < 1, we obtain the sum of the infinite geometric series

a+ ar + ar2 + · · · = a

1− r

Example 19.5

A fly starts at the origin and goes 1 unit up, 1/2 unit right, 1/4 unit down, 1/8 unit
left, 1/16 unit up, etc., ad infinitum. In what coordinates does it end up?
Solution: Its x coordinate is

1

2
− 1

8
+

1

32
− · · · =

1
2

1− −1
4

=
2

5
.

Its y coordinate is

1− 1

4
+

1

16
− · · · = 1

1− −1
4

=
4

5
.

Therefore, the fly ends up in
(
2
5 ,

4
5

)
.
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§20 Menelaus’ theorem

Theorem 20.1

If line PQ intersecting AB on △ABC, where P is on BC, Q is on the extension of
AC, and R on the intersection of PQ and AB, then

PB

CP
· QC

QA
· AR
RB

= 1.

Example 20.2

In triangle ABC, AB = 20 and AC = 11. The angle bisector of ∠A intersects BC at
point D, and point M is the midpoint of AD. Let P be the point of the intersection

of AC and BM . The ratio of CP to PA can be expressed in the form
m

n
, where m

and n are relatively prime positive integers. Find m+ n.

Proof. First, we will find MP
BP . By Menelaus on △BDM and the line AC, we have

BC

CD
· DA

AM
· MP

PB
= 1 =⇒ 62MP

11BP
= 1 =⇒ MP

BP
=

11

62
.

This implies that MB
BP = 1− MP

BP = 51
62 . Then, by Menelaus on △AMP and line BC, we

have
AD

DM
· MB

BP
· PC

CA
= 1 =⇒ PC

CA
=

31

51
.

Therefore, PC
AP = 31

51−31 = 31
20 . The answer is 051 .

§21 Angle bisector theorem

Theorem 21.1

The Angle bisector theorem states that given triangle △ABC and angle bisector
AD, where D is on side BC, then c

m = b
n . It follows that

c
b = m

n .
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Example 21.2

In △ABC, AB = 6, BC = 7, and CA = 8. Point D lies on BC, and AD bisects
∠BAC. Point E lies on AC, and BE bisects ∠ABC. The bisectors intersect at F .
What is the ratio AF : FD?

Proof. Denote [△ABC] as the area of triangle ABC and let r be the inradius. Also,
as above, use the angle bisector theorem to find that BD = 3. There are two ways to
continue from here:
1. Note that F is the incenter. Then, AF

FD = [△AFB]
[△BFD] =

AB∗ r
2

BD∗ r
2
= AB

BD = (C) 2 : 1

2. Apply the angle bisector theorem on △ABD to get AF
FD = AB

BD = 6
3 = (C) 2 : 1

Example 21.3

The angle bisector of the acute angle formed at the origin by the graphs of the lines
y = x and y = 3x has equation y = kx. What is k?

Proof. This solution refers to the Diagram section.
Let O = (0, 0), A = (3, 3), B = (1, 3), and C =

(
3
k , 3

)
. As shown below, note that

OA,OB, and OC are on the lines y = x, y = 3x, and y = kx, respectively. By the
Distance Formula, we have OA = 3

√
2, OB =

√
10, AC = 3− 3

k , and BC = 3
k − 1.] By

the Angle Bisector Theorem, we get OA
OB = AC

BC , or

3
√
2√

10
=

3− 3
k

3
k − 1

3
√
2√

10
=

3k − 3

3− k
√
2√
10

=
k − 1

3− k

1

5
=

(k − 1)2

(3− k)2

5(k − 1)2 = (3− k)2

4k2 − 4k − 4 = 0

k2 − k − 1 = 0

k =
1±

√
5

2
.
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Since k > 0, the answer is k = (A)
1 +

√
5

2
.

Example 21.4

In triangle ABC, AB = 13, BC = 14, AC = 15. Let D denote the midpoint of BC
and let E denote the intersection of BC with the bisector of angle BAC. Which of
the following is closest to the area of the triangle ADE?

Proof. The area of ADE is DE·h
2 = DE

BC · BC·h
2 = DE

BC [ABC] where h is the height of
triangle ABC. Using Angle Bisector Theorem, we find 13

BE = 15
14−BE , which we solve to

get BE = 13
2 . D is the midpoint of BC so BD = 7. Thus we get the base of triangle

ADE,DE, to be 1
2 units long. We can now use Heron’s Formula on ABC.

s =
AB +BC +AC

2
= 21

[ABC] =
√
(s)(s−AB)(s−BC)(s−AC) =

√
(21)(8)(7)(6) = 84

DE

BC
[ABC] =

1
2

14
· 84 = 3

§22 Practice Questions

1. Find the value of x, y in the following equation, given that x, y ∈ R

1

x+ iy
+

1

1 + 2i
= 1

2. Evaluate
∞∑
n=1

1

(2n− 1)(2n+ 1)
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3. Show whether the following series is converging or diverging and evaluate the value
to which it converges (if it does converge).

∞∑
n=1

1

n
+

1

n+ 2

4. Given an a by b rectangle with a fixed perimeter P = 2(a + b). Show that the
maximum area occurs when a = b.

5. What is the minimum value of
18

n
+

n

2

for positive values of n.

6. Find three solutions to the equation

4z2 + 4z̄ + 1 = 0

where z̄ denotes the conjugate of z.

7. Find the minimum value of
a

2b
+

b

4c
+

c

8a

for positive a, b, c

8. It is given that z = 2 and z = 1 + 2i are solutions of the equation

z4 − 3z3 + az2 + bz + c = 0

where a, b, c are real constants. Determine the values of a, b, c.

9. Evaluate
38∑
n=1

ln
x

x+ 1

10. The complex number z satisfies

z + 1 + 8i =| z | (1 + I)

Show that
| z |2 −18 | z | +65 = 0

(| z | means
√
a2 + b2 for some z = a+ ib)

11. It is given that
z = cos θ + i sin θ

for 0 ≤ z ≤ 2π. Show that

2

1 + z
= 1− i tan

(
θ

2

)
12. Let b, h denote the base and the height of some triangle whose area is 200. Find

the minimum value of b+ h
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13. What is the minimum value of x2 + y2 + z2, where x, y, z are positive numbers and
xyz = 1

14. Evaluate
∞∑
n=1

3

n2 + 3n+ 2

15. Show that an equilateral triangle has the most area of any triangle with a fixed
perimeter.

16. If x1, x2, x3 are three positive numbers such that x1 + 2x2 + 3x3 = 60. What is the
smallest possible value of the sum x21 + x22 + x23?

17. In triangle ABC,
2a2 + 4b2 + c2 = 4ab+ 2ac

Find the numerical value of cosB

18. Demonstrate that in the case where a1a2a3...an = 1, then a1+a2+a3+ ...+an ≥ n

19. Solve the equation
2z̄(1− 2i)

5z
+

i

1 + 2i
=

2− 3i

z

giving the answer in the form of x+ iy. z̄ denotes the conjugate of z

20. Evaluate
∞∑
n=1

sin2
1

n
− sin2

1

n+ 2

21. Triangle ABC has AB = 21, AC = 22 and BC = 20. Points D and E are located
on AB and AC, respectively, such that DE is parallel to BC and contains the
center of the inscribed circle of triangle ABC. Then DE = m/n, where m and n
are relatively prime positive integers. Find m+ n.

22. Triangle ABC with AB = 50 and AC = 10 has area 120. Let D be the midpoint
of AB, and let E be the midpoint of AC. The angle bisector of ∠BAC intersects
DE and BC at F and G, respectively. What is the area of quadrilateral FDBG?

23. Square ABCD has side length 2. M is the midpoint of CD, and N is the midpoint
of BC. P is on MN such that N is between M and P , and m∠MAN = m∠NAP .
Compute the length of AP .

24. Let m,n be positive integers with m < n. Find the a closed form for the sum

1
√
m+

√
m+ 1

+
1√

m+ 1 +
√
m+ 2

+ · · ·+ 1√
n− 1 +

√
n

25. Evaluate
1

1 +
√
3
+

1√
3 +

√
5
+

1√
5 +

√
7
+ ...+

1√
167 +

√
169

26. Evaluate the following expression

1

1 +
√
2
+

1√
2 +

√
3
+

1√
3 +

√
4
+ ...+

1√
2016 +

√
2017
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27. Prove that if a ≥ b ≥ 0, then

(a− b)2

8a
≤ a+ b

2
−

√
ab ≤ (a− b)2

8b

28. In how many ways can the following prizes be given away to a class of twenty boys:
first and second Classical, first and second Mathematical, first Science, and first
French?

29. Under old hardware, a certain programme accepted passwords of the form

eell

where

e ∈ {0, 2, 4, 6, 8}, l ∈ {a, b, c, d, u, v, w, x, y, z}.

The hardware was changed and now the software accepts passwords of the form

eeelll.

How many more passwords of the latter kind are there than of the former kind?

30. A license plate is to be made according to the following provision: it has four
characters, the first two characters can be any letter of the English alphabet and
the last two characters can be any digit. One is allowed to repeat letters and digits.
How many different license plates can be made?

31. In problem 3, how many different license plates can you make if (i) you may repeat
letters but not digits?, (ii) you may repeat digits but not letters?, (iii) you may
repeat neither letters nor digits? 462 Problem How many 5-lettered words can be
made out of 26 letters, repetitions allowed, but not consecutive repetitions (that is,
a letter may not follow itself in the same word)?

32. How many positive integers are there having n ≥ 1 digits?

33. How many n-digits integers (n ≥ 1) are there which are even?

34. How many n-digit nonnegative integers do not contain the digit 5 ?

35. How many n-digit numbers do not have the digit 0 ?

36. There are m different roads from town A to town B. In how many ways can Dwayne
travel from town A to town B and back if (a) he may come back the way he went?,
(b) he must use a different road of return?

37. How many positive divisors does 283952 have? What is the sum of these divisors?

38. How many factors of 295 are larger than 1, 000, 000 ?

39. How many positive divisors does 360 have? How many are even? How many are
odd? How many are perfect squares?

40. How many different sums can be thrown with two dice, the faces of each die being
numbered 0, 1, 3, 7, 15, 31 ?
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41. How many different sums can be thrown with three dice, the faces of each die being
numbered 1, 4, 13, 40, 121, 364 ?

42. How many two or three letter initials for people are available if at least one of the
letters must be a D and one allows repetitions?

43. How many strictly positive integers have all their digits distinct?

44. The Morse code consists of points and dashes. How many letters can be in the
Morse code if no letter contains more than four signs, but all must have at least
one?

45. An n × n × n wooden cube is painted blue and then cut into n31 × 1 × 1 cubes.
How many cubes (a) are painted on exactly three sides, (b) are painted in exactly
two sides, (c) are painted in exactly one side, (d) are not painted?

46. How many even integers between 4000 and 7000 have four different digits? 494 Prob-
lem (AHSME 1998) Call a 7-digit telephone number d1d2d3 − d4d5d6d7 memorable
if the prefix sequence d1d2d3 is exactly the same as either of the sequences d4d5d6
or d5d6d7 or possibly both. Assuming that each di can be any of the ten decimal
digits 0, 1, 2, . . . , 9, find the number of different memorable telephone numbers.

47. Three-digit numbers are made using the digits {1, 3, 7, 8, 9}.

48. How many of these integers are there?

49. How many are even?

50. How many are palindromes?

51. How many are divisible by 3 ?

52. (AHSME 1989) Five people are sitting at a round table. Let f ≥ 0 be the number
of people sitting next to at least one female, and let m ≥ 0 be the number of people
sitting next to at least one male. Find the number of possible ordered pairs (f,m)

53. How many integers less than 10000 can be made with the eight digits 0, 1, 2, 3, 4, 5, 6, 7?

54. In how many ways can one arrange the numbers 21, 31, 41, 51, 61, 71, and 81 such
that the sum of every four consecutive numbers is divisible by 3 ?

55. Let S be the set of all natural numbers whose digits are chosen from the set
{1, 3, 5, 7} such that no digits are repeated. Find the sum of the elements of S.

56. Show that

1 + 2 + 3 + · · ·+
(
n2 − 1

)
+ n2 =

n2
(
n2 + 1

)
2

.

57. Show that

1 + 3 + 5 + · · ·+ 2n− 1 = n2.

58. Sum the series

20 + 20
1

5
+ 20

2

5
+ · · ·+ 40.
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59. Show that

1

1996
+

2

1996
+

3

1996
+ · · ·+ 1995

1996

is an integer.

60. Let Tn = 1 + 2 + 3 + · · ·+ n and

Pn =
T2

T2 − 1
· T3

T3 − 1
· T4

T4 − 1
· · · Tn

Tn − 1
.

Find P991.

61. Given that

1

a+ b
,

1

b+ c
,

1

c+ a

are consecutive terms in an arithmetic progression, prove that

b2, a2, c2

are also consecutive terms in an arithmetic progression. 360 Problem Consider the
following table:

1 = 1

2 + 3 + 4 = 1 + 8

5 + 6 + 7 + 8 + 9 = 8 + 27

10 + 11 + 12 + 13 + 14 + 15 + 16 = 27 + 64

Conjecture the law of formation and prove your answer.

62. The odd natural numbers are arranged as follows:

(1)

(3, 5)

(7, 9, 11)

(13, 15, 17, 19)

(21, 23, 25, 27, 29)

Find the sum of the nth row.

63. Sum

10002 − 9992 + 9982 − 9972 + · · ·+ 44 − 32 + 22 − 11.

64. The first term of an arithmetic progression is 14 and its 100 th term is −16. Find
(i) its 30th term and (ii) the sum of all the terms from the first to the 100 th.
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